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Abstract

Perioperative acute lung injury (ALI) is a syndrome characterised by hypoxia and chest radiograph changes. It is a
serious post-operative complication, associated with considerable mortality and morbidity. In addition to mechanical
ventilation, remote organ insult could also trigger systemic responses which induce ALI. Currently, there are limited
treatment options available beyond conservative respiratory support. However, increasing understanding of the
pathophysiology of ALI and the biochemical pathways involved will aid the development of novel treatments and
help to improve patient outcome as well as to reduce cost to the health service. In this review we will discuss the
epidemiology of peri-operative ALI; the cellular and molecular mechanisms involved on the pathological process; the
clinical considerations in preventing and managing perioperative ALI and the potential future treatment options.
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Introduction

The term acute lung injury (ALI) was first introduced
in 1994 by the American–European Consensus Con-
ference Committee[1]. It is defined as acute onset
hypoxia with PaO2/FiO2 between 200-300; presence
of bilateral infiltrates on the chest radiograph; in
absence of pulmonary hypertension or other cardiac
pathologies. The term was coined to identify cases
which are not severe enough to fall into the criteria of
Acute Respiratory Distress Syndrome (ARDS), for the
ease of identification and further research. Since then,
ALI has attracted significant attention in both clinical
and laboratory research. Interestingly, general abdom-
inal surgery carries similar ALI risk as general thoracic
surgeries, and animal studies of remote trauma and non-
pulmonary transplant demonstrates features of ALI,

suggesting that peri-operative ALI is at least partially
attributable to remote injury. In this article, we will
discuss the epidemiology of perioperative ALI, as well
as the biochemical mechanisms and clinical considera-
tions of perioperative ALI due to remote injury.

Epidemiology

In the general surgical population, the incidence of
ARDS is reported to be 0.2%[2]. Indeed, it is thought
that patients who undergo elective minor orthopaedic
and pelvic surgeries are at minimal risk of developing
perioperative ALI[3-4]. Thoracic and abdominal sur-
geries are associated with higher risks. In patients
without significant risk factors, the average ALI
incidence in thoracic and abdominal surgery is 1.3-
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4%[5-7], with 1.2%-2.3% incidence of respiratory fail-
ure[8-9]. Interestingly, despite the surgical manipulation
of the lung, the incidence of perioperative ALI in
lobectomy and pneumonectomy is only 2.8%-5%. In
cardiac and aortic surgery, the incidence of periopera-
tive ALI is also around 5%; however, this can increase
to as high as 28%-35% in high risk procedures[10-11].
Esophagectomy is associated with a high incidence of
ALI and reported to be between 16%-41%[12-14]. There
is not enough published data to create a comprehensive
list of surgeries and associated ALI risks, but recom-
mendations for a surgery related risk stratification
system have been proposed by Kor et al.[11].
The pre-morbid state of the patient plays a significant

role of the development of perioperative ALI. Two
cohort studies involving a total of 7,126 patients with
pre-operative risk factors for developing ALI reported
an incidence of 6.8%-7.5%[11,15]. A number of studies
have looked into pre-operative patient parameters and
constructed ALI prediction models; however, their
application in clinical practice has not been reported.
Emergency surgery is the most consistently reported
predictor of ALI; other frequently reported predictors of
ALI include age, pre-operative renal failure, chronic
obstructive pulmonary disease (COPD) and pneumonia,
hypoalbuminaemia and alcohol consumption. These
four models employed different markers of respiratory
distress (desaturation, tachyapnoea, dysapnoea and
oxygen requirement), all of which are statistically
significant predictors from the literature that are listed
in Table 1[3,11,15-18].
Development of perioperative ALI is associated with

significantly worse outcomes (See Fig. 1 for summary

of ALI clinical outcomes). Patients with ALI are twice
as likely to be admitted to intensive care unit (ITU) and
require an average of an 8 day stay (which is 4-8 times
longer than those without ALI). This includes a relative
risk ratio of 2.5 for mechanical ventilation compared to
normal ventilation, in which patients spend on average 6
days on mechanical ventilation. This is 6 times longer
than the duration of non ALI patients. This prolongs the
duration of the hospital stay to an average of 15-20
days, up to 2.5 times longer compared to patients
without ALI[7,15]. The prolonged ITU and hospital stay
is not without its own risks. The total in-patient
mortality rate is between 22 to 24%, which is 5-10
times higher than comparative population without ALI.
However, most of this is accounted for by ITU mortality
of 20%[15,19-20]. Even when the patient recovers from
the episode and is discharged, their long term prognosis
is still significantly worse than those without ALI. A
two year follow up study reported that survivors of
perioperative ALI required on average of 2 episodes of
readmission and 6 days of hospital stay per year while
another study reported 30 day mortality to be up to 30%
and 90 day mortality to be 55%[16,21].
Apart from the significant mortality and loss of

quality of life from the extended ITU and hospital stay
experienced by patients, perioperative ALI is also
associated with a significant cost to the health care
system. In a study based on American health care
expenditure in 2013, it has been estimated that initial
hospital management of ALI costs approximately
$100,000, with another $35,000 spent on two years of
follow up treatment[21].
In summary, perioperative ALI can be a common

Fig. 1 "Roadmap" of postoperative acute lung injury (ALI). Illustrating the higher rate of invasive ventilation, ITU admission; longer
length of ITU and hospital stay; re-admission; as well as the much higher ITU and 90 day mortality, non-ALI cohort data presented in brackets for
comparison [7,15-16,19-21].
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complication in certain patient groups, and is associated
a significantly poor outcome and high treatment cost.
Currently, most cases of perioperative ALIs are
managed conservatively and, therefore, further investi-
gation into its pathophysiology and treatment is very
necessary.

Molecular mechanism of acute lung injury

From the literature reviewed, most of the human
studies and an animal model of ALI reported similar
presentations of clinical, histological and biochemical

changes (Fig. 2), despite the varied aetiology of lung
injury in the studies. Here, we will attempt to summarise
the biochemical pathways found to be involved with the
pathogenesis of acute lung injury.

Inflammation

Histologically, ALI is typically associated with
increased neutrophil infiltration, increased vascular
permeability, and increased tissue oedema, all of
which are characteristic features of an inflammatory
process. Both human studies and animal models of ALI
invariably reported increased production of systemic

Table 1 Summary of tested parameters from 6 acute lung injury (ALI) predictive models
Tested and reported statistical significance* (n = 6) Tested and reported no statistical significance* (n = 6)

General

Gender 1 1

Age 2 -

Functionally not independent 1 -

Weight loss 1 -

Alcohol 2 -

Smoking 1 2

Admission not from home 1 -

Obesity 1 -

Past medical history, pulmonary

COPD 2 -

preoperative pneumonia 2 -

preoperative dysapnoea 1 -

preoperative desaturation 1 1

preoperative tachyapnoea 2 -

Aspiration 1 -

FiO2 1 -

Others

ASA grade 1 1

preoperative sepsis 1 1

preoperative renal failure 2 -

Cirrhosis 1 -

Albumin 2 -

Shock 1 -

preoperative anaemia 1 -

Advanced cancer 1 -

Periopeartive factors

Emergency surgery 5 -

Surgery duration 1 -

Fluid infusion 1 -

Blood Transfusion 1 -

Note: *: number of studies which tested the parameter and demonstrated statistical significance. **: number of studies which tested the parameter and reported
that there is no statistical significance [3,11,15-18]. COPD: chronic obstructive pulmonary disease.
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and local cytokines (IL-1β, IL-6, IL-8, IL-10, and TNF-
α], chemokines (CXCL1, CINC1, MIP1, and MCP1)
and other immune mediators. This occurs without the
presence of endotoxin in remote organ injury due to
trauma, ischaemia and transplant[22-25]. The inflamma-
tory mediators are thought to play a significant role in
the pathogenesis of ALI, as eliminating various parts of
the inflammatory cascade alleviates the severity of lung
injury[26-30].
Tissue injury, whether of the lung or remote organ,

leads directly to cell injury and necrosis. In this process,
TNF-α and IL-1β are released[31]. This has several
effects. For example, TNF-α increases vascular perme-
ability, which results in an increased recruitment of
neutrophils and macrophages. It can inactivate IkB
thorough phosphorylation, thereby lifting the inhibition
of NF-kB, which further upregulates the expression of
IL-1β[32-33]. Increased levels of TNF-α and IL-1β recruit
more macrophages and neutrophils, as well as promot-
ing their survival. IL-1β is also able to upregulate the
production of acute phase proteins, such as CRP and
complement, as well as promote the expression of other
cytokines, chemokines and adhesion molecules[34].

Among the cytokines upregulated by TNF-α and IL-
1β are IL-6 and IL-8. IL-6, which is produced mainly by
endothelial cells, modulates the immune response by
altering the expression of neutrophil, macrophage and T
cell chemokines (including CXCL1, MIP1, MCP1 and
CCL5, all of which are reported to be associated with
the pathogenesis of ALI), and also upregulates adhesion
molecules such as selectin ICAM-1 and VCAM-1. IL-8,
which is a chemoattractant produced by macrophages,
induces neutrophil chemotaxis, and upregulates the
phagocytic function of neutrophils[35].
Interestingly, although elevation in IL-10 is reported

by a number of studies in association with ALI, it is
actually an anti-inflammatory cytokine, which inhibits
TNF-α, IL-1β, and NF-kB, as well as causing de-
adherence of macrophages[36]. It is likely that its role in
ALI is more regulatory in nature. This is difficult to
prove, however, as most studies to date demonstrate an
increased level of IL-10 with ALI mimetics and a
reduced level of IL-10 with ALI treatment[37].
Toll like receptors are pattern recognition receptors,

which are usually known for their affinity to bacterial
endotoxins. However, studies have shown that knockout

Fig. 2 Summary of molecular mechanism of acute lung injury (ALI). ALI is characterized by inflammation, increased oxidative and
nitroactive stress, impaired cell junction integrity, release of stress hormones, and altered cell surivial and proliferation pathways. ACE:
angiotensin converting enzyme, DAMPs: damage-associated molecular pattern molecules; iNOS: inducible nitric oxide synthase; MCP1:
monochemotactic protein 1; MAPK: mitogen-activated protein kinases; MIP1: macrophage inflammatory protein 1; ROS: reactive oxygen
species; VEGF: vascular endothelial derived growth factor.
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of toll like receptor 4 (TLR4), as well as its adaptor
protein MyD88 is associated with reduction in ALI
severity in apparently aseptic conditions[26-28]. More
recent studies have alluded to the possibility that as well
as bacterial molecular patterns, TLR4 is also able to
identify endogenous ligands associated with tissue
injury[38]. TLR-4/MyD88 complex acts through down-
stream molecule IKK, which phorophorylate and
inactivate IkB, thereby lifting inhibition on NF-kB[38-39].
Vascular endothelial growth factor (VEGF) is a group

of growth factors which promotes angiogenesis and has
some chemotactic functions. It has been demonstrated
that VEGF expression is upregulated by various
inflammatory mediators described above, including
IL-1β, IL-6 and TNF-α[40-41]. It has been reported that
administration of VEGF increases lung vasculature
permeability, and VEGF inhibition alleviates lung
injury[42-44]; however, reports of VEGF attenuating
lung injury also exist[45-46]. It is possible that the effect
of VEGF depends on the timing in relation to the injury.

Oxidative and nitrosative stress

Studies have shown that remote ALI is associated
with increased oxidative stress markers, and treatments
which reverse ALI are associated with reduced level of
oxidative stress, suggesting that oxidative stress may be
involved in the pathogenesis of ALI[47]. More directly,
anti-oxidant ammonium pyrrolidinedithiocarbamate has
been reported to reduce ALI after liver transplant in
rats[48]. Most of the endogenous reactive oxygen species
(ROS) are produced by NADPH oxidase which is
neutralised by a number of anti-oxidant enzymes such
as superoxide dismutase, glutathione S transferase,
catalase and heme-oxygenase. When the anti-oxidant
capability of the cell is exhausted, oxidative damage
induces the activation of Bcl-2, which triggers mito-
chondrial breakdown and apoptosis[49]. In the context of
ALI, an increase in ROS production, as well as impaired
anti-oxidant capabilities are seen with remote organ
ischaemia, haemorrhage, hypoxia and burns/blast
trauma[50-53].
Recently, studies have also investigated the role of

nitric oxide (NO) and nitric oxidase synthase (NOS) in
ALI. NOS is a group of enzymes which catalyses the
generation of NO from arginine; there are three isoforms
of NOS in human, including neuronal isoform nNOS,
endothelial isoform eNOS and inducible isoform iNOS.
Whereas eNOS is constitutively expressed and is
generally thought to play a protective role, iNOS
expression is upregulated by cytokines such as IL-1β
and TNF-α, and is thought to contribute to tissue
injury[54]. This isoform specific effect has been demon-
strated by Sedoris[55]. While NO can act as an anti-

oxidant, excessive oxidative stress can cause accumula-
tion of peroxinitrite, a reactive nitrogen species that
results in injury through oxidation or nitration[56]. A
number of animal models of Lipopolysaccharide (LPS)
that induces ALI have reported an increased level of
iNOS, while treatment of ALI is associated with
reduced level of iNOS[57-59]. Similar findings have
also been seen in ALI secondary to high volume
ventilation, ischaemia/reperfusion injury and chemical
injury[60-62]. The role of eNOS is less clear, while eNOS
knockout is associated with reduced lung injury after
LPS exposure, reduced eNOS activity worsens lung
injury secondary to bowel and brain ischaemic/reperfu-
sion injury[62-64]. This suggests that the role of NO is
pathology specific and the effect is likely concentration
dependent.
Asymmetric dimethylarginine (ADMA) is a struc-

tural analogue of L-arginine, which competitively binds
to all isoforms of NOS. The binding causes the
uncoupling of NOS, which diminishes NO production
and increases ROS production[65]. The process is
usually kept in check by dimethylargininase (DDAH)
which hydrolyses ADMA[66]. Reduced DDAH activity
and excessive ADMA have been reported in association
with ALI, while increased DDAH activity reduces the
extent of ALI[62,64,67].

Cell survival and proliferation pathways

A number of animal models of ALI secondary to
remote organ injury and other conditions have reported
an altered activity of the PI3K/Akt/mTOR pathway, a
series of signalling molecules which plays a vital role in
cell proliferation. General anaesthetic agents exert their
cytoprotective effects at least in part by upregulating
this pathway. PI3K and mTOR are reported to inhibit
the expression of NF-kB; mTOR could regulate down-
stream molecules like HIF1α[68],which upregulates the
expression of antioxidative enzymes, promotes cell
survival, and encourages angiogenesis; however, its role
can be dual depending on elevated level as it has been
reported with both improvement and deterioration of
lung injury[68-69]. One of the downstream effects of
HIF-1α is to inhibit HMGB1 release from the nucleus.
HMGB1 is a chromatin protein, that acts as a damage-
associated molecular pattern. It can interact with TLR4/
MyD88, which upregulates NF-kB and MAPK; it can
also interact with RAGE. HMGB1 is implicated in brain
trauma induced acute lung injury; it is reported that
RAGE knockdown is protective against ischaemic-
reperfusion, and high soluble RAGE is associated with
prolonged ventilation and lung transplant failure[70].
A number of studies have also demonstrated the role

of apoptotic pathways in ALI. BAX and BAK are pro-
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apoptotic members of the Bcl-2 family. This is usually
kept in check through binding to other proteins or
through sequestering of proteins needed for activa-
tion[71]. ALI models are associated with increased levels
of BAX and BAK, as well as reduced level of the pro-
survival Bcl-2[68,72-73]. One possible mechanism of this
is oxidative stress causing the activation of BAX and
BAK[49]. Activated BAX and BAK are converted from
monomers to oligomers, which form pores on the
mitochondrial membranes. This facilitates transloca-
tions of cytochrome c, which activates the caspase
cascade and causes apoptosis[71]. Increased caspase
activity is also seen in patients with ALI, while ALI
treatments reduce caspase activities[72-74]. However, the
activation of the apoptotic pathway is likely to be a
result of existing cellular insult, not the direct cause of
ALI.
Changes in MAPKs are also seen in ALI models.

MAPKs are a group of serine/threonine kinases which
integrate stress signals and phosphorylate downstream
signals to promote cell survival or cell death. There are
three conventional signalling pathways, p38 MAPK,
ERK1/2 and JNK. p38 MAPK has a number of pro-
survival and pro-apoptotic functions; JNK has a variety
of functions, including induction of cell apoptosis in
response to various cellular stresses, including ischae-
mia/reperfusion and inflammatory cytokines such as
TNF-α; whereas ERK1/2 are thought to have mainly
pro-survival functions[75]. In addition, it is thought that
MAPKs act as downstream signal of TLR to increase
the expression of IL- 1, IL-6 and IL-8[76]. Increased
level of phosphorylated ERK and JNK are seen in ALI
models[77-80]. It is possible that while increased JNK is
related to lung injury, ERK1/2 is a protective response
against the injury. However, it is not possible to confirm
without more studies.

Cell junction integrity

One of the hallmarks of ALI is increased vascular
permeability, which leads to oedema, protein extravasa-
tion and neutrophil infiltration. A number of molecules
have been implicated in the breakdown of intercellular
stability. Occludin is a polypeptide vital for the
formation of tight junction, and reported to be down-
regulated by remote organ ischemia reperfusion
injury[81-82]. Cadherins are polypeptides which form
adherence junctions and interacts with intracellular
actin. It was demonstrated that the expression of
cadherin and endothelial barrier function are damaged
by direct lung injury[83-84].

Stress hormones

Perioperative state, as well as any preoperative

pathologies are frequently associated with increased
physiological stress. The relationship between stress
hormones and severity of lung injury is not well studied;
however, recent studies are beginning to demonstrate
their important in ALI pathogenesis.
Adrenaline is the hormone responsible for sympa-

thetic activation, which is associated with a number of
systemic disease states, including burn injury, sepsis
and ARDS[85-86]. It has been reported that administra-
tion of adrenaline worsens lung histology and asso-
ciated inflammatory response in ALI, whereas β-
adrenoceptor antagonist alleviates ALI[22,87-88]. Dex-
medetomidine is an α-2 adrenoceptor agonist, and has
been found to reduce lung injury secondary to remote
ischaemia/reperfusion injury, chest trauma as well as
surgical pneumoperitoneum[89-91]. The benefit is par-
tially reversed by α-2 adrenoceptor antagonist atipame-
zole, which suggests that dexmedetomidine possesses
protection at least in part via α-2 adrenoceptor aganist
ALI.[92]. However, the benefit of α-2 antagonist in
sepsis induced ALI suggests that the role of α-2
adrenoceptor is pathology specific[88].
Another stress related hormone vasopressin has been

reported to play a protective role in ALI. Administration
of vasopressin reduces pulmonary oedema and airway
secretion, and improves alveolar fluid clearance[93-95].
In addition, a study of ARDS patients reported that
terlipressin administration was associated with signifi-
cantly better oxygenation[96].
The renin-angiotensin system has also been linked to

ALI. Angiotensin II is a peptide hormone, converted
from angiotensin I by ACE. It can be further modified
into angiotensin 1-7 by ACE2. It has been reported that
inhibition of ACE or antagonism of angiotensin II is
associated with significantly less lung injury and
oedema; as well as reduced cytokine and chemokine
expression[77,97]. ACE2 and angiotensin 1-7, however,
have been reported to be protective against ALI
secondary to LPS, bleomycin administration and acid
inhalation[42,77,98]. The possible mechanisms include
reversing vascular permeability caused by VEGF and
down-regulating the pro-apoptotic mediators[42,72,99].
BNP is a 32 amino acid peptide secreted mainly by

cardiomyocytes. It is synthesized from preproBNP,
which is converted to proBNP, then enzymatically
cleaved into BNP and the inactive fragment NT-
proBNP. In addition to modulating vascular tone and
sodium homeostasis, BNP has been found to dampen
inflammatory reaction and promote survival of cardio-
myocytes[100]. Although limited, studies into the role of
BNP in ALI show promising results. It has been
reported that in patients, ALI is associated with signifi-
cantly increased level of systemic BNP, which may
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represent up-regulated compensatory response[101-102].
In animal models of ALI, administration of recombinant
human BNP has been shown to reduce the severity of
lung injury, as well as the associated inflammatory
response and oxidative stress[103-104]. However, more
studies are needed to further validate both the diagnostic
and therapeutic value of BNP in humans.

ALI secondary to remote organ injury and
transplant

While undesirable, surgical manipulation invariably
leads to tissue injury, and it has been observed that even
in pathologies where lungs are not directly damaged,
acute lung injury can ensue from remote organ injury.
Perhaps the most well described aetiology of remote
organ injury that induces ALI is traumatic brain injury.
In TBI cases, acute lung injury is among the most
common non-neuronal organ dysfunction, with an
incidence of 9%[70,105]. Severe trauma in general is
also associated with a high risk of ALI[106]. In addition,
high incidence of ALI has also been reported in liver
transplant and renal transplant[107-109]. More indirectly,
ALI could be reliably reproduced in animals through
organ transplant and remote organ ischaemia[24,110]. The
severity of ALI correlates to the length of remote organ
insult[48,111]. These findings all support the role of lung-
remote organs crosstalk in perioperative acute lung
injury.
ALI causing remote organ injury has been shown to

cause systemic inflammation. Animal studies of trans-
plant related ALI consistently reported increased serum
level of cytokines such as IL-1β and TNF-α; these
cytokines are also found to be increased lung
tissue[28,53,112]. Studies have also shown that disabling
part of the inflammatory pathway such as TLR knock-
out, NF-kB inhibition and preventing leucocyte adhe-
sion can reduce the extent of lung injury and the level of
cytokines in the lungs[28,113]. This suggests that
cytokines released from remote organ injury could
spread to the lungs via the blood supply, where it
activates pro-inflammatory pathways in the lungs and
leads to ALI. In addition to circulating cytokines,
remote organ injury can also cause the release of
proinflammatory damage associated molecular pattern
such as HMGB1 into the circulation, which can also
activate the proinflammatory pathways in the lungs[70].
In addition to inflammation, a number of studies have

reported increased oxidative stress in animal models
of ALI secondary to remote injury. Limb trauma reduces
SOD activity and Glutathione, while increases the levels
of hydrogen peroxide and MDA. This pattern is
seen systemically in the serum as well as lung tissue.
Similar pattern is also seen with transplant[23,50] and

haemorrhagic shock[104]. In addition, there is some
evidence that oxidative stress is alleviated through over-
expression of SOD and through glutathione adminis-
tration[114-115]. This suggests that oxidative stress may
directly contribute towards the pathogenesis of ALI.
While not well studied, dexmedetomidine has

demonstrated protective effect in myocardial and renal
ischaemia/reperfusion injury[89,92]. This suggests that
abnormality in sympathetic activation may play a role in
ALI secondary to remote organ injury.
Interestingly, despite the wealth of animal studies

showing that intestinal ischaemic-reperfusion injury
causes acute lung injury, there is no literature of similar
condition in humans. Indeed, the incidence of perio-
perative ALI is not well presented in the literature
outside the topic of thoracic surgery, and may pose an
area for future study.

Clinical considerations

Protective ventilation

It is now widely accepted that protective ventilation, a
combination of low tidal volume, use of PEEP and
recruitment manoeuvre is significantly associated with
incidence of perioperative ALI. The PROtective
Ventilation group (PROVE) has organised a number
of larger scale randomised control trials (RCT). The
IMPROVE trial, published in 2013, reported that the
incidence of perioperative ALI in abdominal surgery is
0.5% when patients receive protective ventilation
compared with 3% of those who received conventional
ventilation[116]. Similar results were also found in a
meta-analysis which looked into thoracic and neuro-
surgery[117]. However, protective ventilation does not
seem to modify the mortality rate[118-120].
Studies have also looked into the benefits of

individual components of protective ventilation. The
PROVHILO trial looked into the benefit of PEEP and
recruitment manoeuvre with fixed tidal volume. It was
found that high PEEP and alveolar recruitment itself did
not lead to improvement in oxygenation. On the
contrary, PEEP was associated with higher incidence
of intra-operative hypotension[121]. This also echoes the
findings in non-surgical patients[122]. When low tidal
volume ventilation on its own, the results were also
somewhat conflicting. While two meta-analyses of 4700
cases reported significantly lower rate of ALI with low
tidal volume alone, they did not standardise the protocol
for PEEP and recruitment manoeuvre. When controlled
for PEEP and recruitment manoeuvre, low tidal volume
did not reduce the rate of ALI[6,122-123]. However,
studies report that use of protective ventilation does not
seem to modify the overall mortality rate[124-125].
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One lung ventilation is a special ventilation technique
used in thoracic surgery, which is associated with
significantly higher rate of perioperative ALI. This
could also be reduced by the use of protective
ventilation, low tidal volume of 6-8 mL/kg with PEEP
and recruitment manoeuvre was associated with sig-
nificantly lower rate of ALI[126-127]. Other parameters of
ventilator setting may also affect the incidence of ALI.
A study by Hu et al. reported that pressure controlled
volume guaranteed ventilation that resulted in better
maintenance of lung compliance and blunts increase in
inflammatory markers[128].

Anaesthetic agents

In recent years, a number of published studies looked
into the effect of anaesthetic agents on the progression
of ALI, with some interesting results.
Sevoflurane, isoflurane and propofol have all been

demonstrated to exhibit anti-inflammatory and cytopro-
tective effects in animal models of ALI, and the benefit
is shown consistently in experiments involving LPS
exposure, transplant and remote organ injury models,
and ventilator induced lung injury models[37,79,81].
Sevoflurane is used in the majority of anaesthetic

agent studies. While there are very little available data
on the effect of sevoflurane administration on the
mortality rate or recovery time in ALI models, an in-
vivo animal model consistently demonstrated that
administration of sevoflurane in ALI model is asso-
ciated with reduced histological change, reduced wet:
dry ratio and improved ventilation parameters (higher
pO2 and lower pCO2)

[51,129-130]. Sevoflurane adminis-
tration is also associated with significantly lower
neutrophil infiltration in the pulmonary tissue of the
ALI models[131]. In addition to the histological and
blood gas parameter changes, sevoflurane administra-
tion is also associated with lower levels of proinflam-
matory cytokines, most notably Il-1a, Il-6, TNF-α, and
lower level of chemokines[80,132]. Sevoflurane admin-
istration is also associated with significantly lower NF-
kb expression[130].
Sevoflurane administration has also been shown to

reduce the activity of cyclo-oxygenase, lipo-oxygenase
and cytosolic phospholipase A2 activities, thereby
reducing the production of leukotriene and thrombox-
ane levels[133-134]. Sevoflurane administration is also
associated with reduced expression of TLR4[135].
Similar findings are also seen with isoflurane, with

promising in-vivo survival data. In an experimental
model of AKI using zymosan, a fungal surface glucan,
isoflurane administration has been demonstrated to
increase the survival rate 3-5 folds[73,136]. This is
associated with less histological damage, less protein

exudate and pulmonary oedema, and reduction in
proinflammatory cytokines similar to that of sevoflur-
ane. The studies also looked into pathways related to
cell survival, and found that isoflurane administration is
associated with significantly reduced caspase activities,
downregulation of NF-kb through reduced expression
and upregulated i-kb expression, and affects a number
of apoptosis related mediators including BAX and Bcl-
2. These are likely to account for the cytoprotective
effect of isoflurane[73,81,136-137].
Both isoflurane and sevoflurane are thought to play a

role in maintaining the integrity of tight junction
between airway epithelial cells. Breakdown of the
tight junction with increased permeability is noted in
both ventilation-induced lung injury and LPS models of
ALI. Both volatile agents are noted to upregulate cell
junction proteins zona occludens 1 and occludin
expression, with normalisation of epithelial permeabil-
ity[81-82].
There are several explanations to the anti-inflamma-

tory and cytoprotective effects of volatile agent. It was
found that in human and rat cell lines, triflurinated
carbon molecule significantly reduces the expression of
inflammatory cytokines Il-1, Il-6, and Il-8 and chemo-
kines MIP-1 and CINC-1, which is associated with
reduced neutrophil chemotaxis. In addition, triflurinated
carbon also seems to downregulate the caspase
activity[74]. Fortis et al. found that GABA administra-
tion also significantly reduces the expression of
cytokines and chemokines, and this is negated by the
co-administration of picrotoxin, a GABA receptor
antagonist[37]. Further study into the protective mechan-
ism of inhalational agents is needed as this could lead to
the development of better ALI treatments.
Propofol has demonstrated protective effect in ALI

models. Zhao et al. demonstrated that propofol admin-
istration is associated with 2-fold increase in survival in
a LPS model of ALI. Findings of reduced histological
damage, pulmonary oedema and reduced pro-inflam-
matory cytokine profile were noted, similar to that of
sevoflurane and isoflurane administration. Propofol has
also been noted to have anti-oxidative properties,
administration is associated with increased SOD and
Nrf-2 activities, which reduces tissue hydrogen per-
oxide and MDA[50,138].
Comparative studies of sevoflurane and propofol

found that sevoflurane administration was associated
with less neutrophil infiltration and lower cytokine
expression[131,139]. In terms of human study, there are
four studies with a total of 130 participants, comparing
the outcome of propofol and sevoflurane in periopera-
tive ALI; overall, there were no significant differences
in the incidence of ARDS and the reported biochemical
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difference is conflicting between the studies[25,140-142].
Xenon is a novel general anaesthetic agent, which has

previously demonstrated neuroprotective effects. It also
has antinflammatory and anti-apoptotic properties in
ALI secondary to remote renal injury[68].
In summary, there is now a growing body of evidence

that general anaesthetic agents have significant protec-
tive effect against ALI, and have a role to play in the
prevention and treatment of ALI. Given that most
operations possess a high risk of developing periopera-
tive ALI are done under general anaesthesia, the only
clinical relevance would be the choice of anaesthetics,
however, there is currently no conclusive human study
to prove either is superior, although animal studies
points towards inhalational agents.

Fluid administration and transfusion

In most operations, intravenous fluid is routinely
administered, with blood component transfusion some-
times in case of high blood loss. However, a number of
observation studies have reported that during the
perioperative period, high volume of fluid administra-
tion is associated with significantly higher incidence of
ALI[143-145]. It has been demonstrated in RCTs of
perioperative ALI cases that conservative fluid manage-
ment is associated with better oxygenation and shorter
intubation time[146-147]. In a large RCT of medical and
surgical patients with ALI, it was found that conserva-
tive fluid administration is associated with significantly
better oxygenation, lung compliance, and 60 day
survival[148].
Nevertheless, it gets more complex in trauma. In

animal studies, haemorrhage is associated with sig-
nificantly decreased oxygenation, increased pulmonary
vascular permeability and cell infiltration[104,149]. How-
ever, in trauma patients, fluid administration is still
linked with incidence of ALI. Two observational studies
with a total of more than 2300 patients identified that the
rate of ALI/ARDS is significantly higher in patients
administered with larger volume of IV fluid[20,150].
However, it is not known if this is an association or a
causation, as larger fluid administration could be
associated with severity of the trauma.
Like fluid administration, blood product transfusion

has also been associated with the development of
ALI[20,151]. It is noted that the incidence of ALI
associated with perioperative transfusion is significantly
higher than the incidence in the general population[152],
and that the incidence of perioperative transfusion
associated acute lung injury (TRALI) is significantly
higher with larger volume of transfusion[4]. A number of
specific blood components are suggested as the cause of
transfusion-related ALI, including erythrocyte derived

micro-particles and serum antibodies and platelet
released VEGF[43,153-154]. However, the exact mechan-
ism is likely to be complex and multi-factorial.

Conclusion and way forward

In summary, perioperative ALI is a complex
pathology which involves the activation of inflamma-
tory pathways, increased endovascular permeability,
increased oxidative stress and change in stress
hormones. It occurs as a result of the interaction
between surgical and anaesthetic factors, and patient's
pre-operative condition. This is best described by the
multi-causal model such as the one proposed by
Middlegurg et al.[155].
In certain patient cohorts, perioperative ALI could be

a frequent and devastating complication, associated
with long periods of invasive monitoring and treatment,
longer stay in hospital, more long term complications
and increased mortality. This is also associated with
significant cost to the health system.
In addition to protective ventilation, use of inhala-

tional anaesthetic agent and conservative fluid admin-
istration, a number of potential prophylaxis and
treatment for perioperative ALI have been identified
and investigated in recent years. In animal studies,
suppression of various parts of inflammatory cascade
consistently reduced the severity of lung injury. One
method to supress inflammation in humans is with
corticosteroids. Indeed, administration of corticosteroid
is associated with significantly milder histological and
mechanical lung changes, and significantly lower
cytokine level compared to the control group[156-157].
It is, however, worth noting that the role of corticoster-
oids in paediatric patients with is less clear, with
conflicting data regarding its benefits[158].
Neutrophil elastase is a proteinase secreted by

neutrophils and macrophages during inflammation,
and knockout studies suggest that it plays a role in
leucocyte recruitment, inflammatory mediator release
and phagocytosis[159]. In patients with ARDS secondary
to sepsis, selective neutrophil elastase inhibitor sivele-
stat has been reported to improve oxygenation, reduce
lung injury and shorten the length of ICT stay[160-161]. In
the context of postoperative ALI without sepsis, while it
improves inflammatory mediator levels, the benefit on
prognosis is unclear[162-164].
Other treatments which have shown potential benefit

in human studies include therapeutic ventilation
hypercapnia and terlipressin administration which
have been shown to improve oxygenation and reduce
lung injury[96,165].
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Awide range of interventions have shown benefit in
animal studies, some using substances which are
already licenced for use in humans. Hypertonic saline
has shown benefits in animal studies, studies reported
significantly lower lung injury and oedema associated
with hypertonic saline administration, which is also
associated with lower rate of mortality[166-167]. TNF-α
inhibition has shown promising results in animal model
of ALI, which may warrant further human studies with
existing anti-TNF therapy[168-169].
As discussed above, manipulation of the renin-

angiotensin-aldosterone system has shown promise as
treatments for ALI. ACE inhibition, ARB blockade and
upregulation of ACE II have all been shown to reduce
the severity of ALI in animal models[42,77,98]. Miner-
alocorticoid antagonist spironolactone administration
has also been associated with reduced ALI in an
ischaemic-reperfusion model[170]. Similarly, α-2 adre-
noceptor agonist dexmedetomidine and vasopressin
have also shown therapeutic benefits in animal
models[92,94,96] whereas studies suggests that use of
adrenaline in ALI should be avoided[87].
Despite the limited conservative management options

available for perioperative ALI, more potential treat-
ment modalities are emerging which have shown
promising results. However, larger scale human studies
are needed to validate those findings, and potentially
contribute towards a much lower mortality and
morbidity rate associated with perioperative ALI.
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