CiteULike  View Full Text   View/Add Comment  Download reader    
Anna Karolina Zuk,Xuesong Wen,Stephen Dilworth,Dong Li,Lucy Ghali.Journal of Biomedical Research,2017,31(3):240-247
Modeling and validating three dimensional human normal cervix and cervical cancer tissues in vitro
Received:November 15, 2016  
DOI10.7555/JBR.31.20160150
Keywordscervical cancer, MAX dimerisation protein 1, cytokeratins, three dimensional in vitro models
Grant Program
              
AuthorInstitution
Anna Karolina Zuk Department of Natural Sciences, Middlesex University, The Burroughs, Hendon, London NW4 4BT, UK
Xuesong Wen Department of Natural Sciences, Middlesex University, The Burroughs, Hendon, London NW4 4BT, UK
Stephen Dilworth Department of Natural Sciences, Middlesex University, The Burroughs, Hendon, London NW4 4BT, UK
Dong Li Department of Natural Sciences, Middlesex University, The Burroughs, Hendon, London NW4 4BT, UK
Lucy Ghali Department of Natural Sciences, Middlesex University, The Burroughs, Hendon, London NW4 4BT, UK
Hits: 80
Download times: 81
      
Abstract
      The use of three dimensional in vitro systems in cancer research is a promising path for developing effective anticancer therapies. The aim of this study was to engineer a functional 3-D in vitro model of normal and cancerous cervical tissue. Normal epithelial and immortalized cervical epithelial carcinoma cell lines were used to construct 3-D artificial normal cervical and cervical cancerous tissues. De-epidermised dermis (DED) was used as a scaffold for both models. Morphological analyses were conducted by using hematoxylin and eosin staining and characteristics of the models were studied by analyzing the expression of different structural cytokeratins and differential protein marker MAX dimerisation protein 1 (Mad1) using immunohistochemical technique. Haematoxylin and eosin staining results showed that normal cervical tissue had multi epithelial layers while cancerous cervical tissue showed dysplastic changes. Immunohistochemistry staining revealed that for normal cervix model cytokeratin 10 was expressed in the upper stratified layer of the epithelium while cytokeratin 5 was expressed mainly in the middle and basal layer. Cytokeratin 19 was weakly expressed in a few basal cells. Cervical cancer model showed cytokeratin 19 expression in different epithelial layers and weak or no expression for cytokeratin 5 and cytokeratin 10. Mad1 expression was detected in some suprabasal cells. The 3-D in vitro models showed stratified epithelial layers and expressed the same types and patterns of differentiation marker proteins as seen in corresponding in vivo tissue in either normal cervical or cervical cancerous tissue. These findings imply that they can serve as functional normal and cervical cancer models.
Close